Learning Articulation Changepoint Models from Demonstration

نویسندگان

  • Scott Niekum
  • Sarah Osentoski
  • Christopher G. Atkeson
  • Andrew G. Barto
چکیده

We introduce CHAMP, an algorithm for online Bayesian changepoint detection in settings where it is difficult or undesirable to integrate over the parameters of candidate models. CHAMP is used in combination with several articulation models to detect changes in articulated motion of objects in the world, allowing a robot to infer physically-grounded task information. We focus on three settings where a changepoint model is appropriate: objects with intrinsic articulation relationships that can change over time, object-object contact that results in quasi-static articulated motion, and assembly tasks where each step changes articulation relationships. We experimentally demonstrate that this system can be used to infer various types of information from demonstration data including causal manipulation models, human-robot grasp correspondences, and skill verification tests.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Demonstration of Bow Articulation Recognition with Wekinator and K-Bow

Using the Wekinator software tool for real-time, interactive machine learning [3] and the K-Bow commercial sensor bow [5], we have constructed a realtime cello bow articulation classification system. This system is capable of outputting articulation labels (e.g., “legato,” “marcato,” “spiccato”) in real-time as a cellist performs. These labels, which are output via Open Sound Control [9], may b...

متن کامل

Constructing Skill Trees for Reinforcement Learning Agents from Demonstration Trajectories

We introduce CST, an algorithm for constructing skill trees from demonstration trajectories in continuous reinforcement learning domains. CST uses a changepoint detection method to segment each trajectory into a skill chain by detecting a change of appropriate abstraction, or that a segment is too complex to model as a single skill. The skill chains from each trajectory are then merged to form ...

متن کامل

Bayesian changepoint and time-varying parameter learning in regime switching volatility models

BAYESIAN CHANGEPOINT AND TIME-VARYING PARAMETER LEARNING IN REGIME SWITCHING VOLATILITY MODELS This dissertation proposes a combined state and piecewise time-varying parameter learning technique in regime switching volatility models using multiple changepoint detection. This approach is a Sequential Monte Carlo method for estimating GARCH & EGARCH based volatility models with an unknown number ...

متن کامل

Changepoint Analysis by Modified Empirical Likelihood Method in Two-phase Linear Regression Models

A changepoint in statistical applications refers to an observational time point at which the structure pattern changes during a somewhat long-term experimentation process. In many cases, the change point time and cause are documented and it is reasonably straightforward to statistically adjust (homogenize) the series for the effects of the changepoint. Sadly many changepoint times are undocumen...

متن کامل

CHAMP: Changepoint Detection Using Approximate Model Parameters

We introduce CHAMP, an algorithm for online Bayesian changepoint detection in settings where it is difficult or undesirable to integrate over the parameters of candidate models. Rather than requiring integration of the parameters of candidate models as in several other Bayesian approaches, we require only the ability to fit model parameters to data segments. This approach greatly simplifies the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014